
b2luigi Documentation
Release 0.9.0

Nils Braun

Mar 20, 2023

Contents

1 Why not use the already created batch tasks? 3

2 Is this the only thing I can do with b2luigi? 5

3 Why are you still talking, lets use it! 7

4 Content 9
4.1 Installation . 9
4.2 Quick Start . 10
4.3 Batch Processing . 14
4.4 Belle II specific examples . 23
4.5 API Documentation . 28
4.6 Run Modes . 38
4.7 FAQ . 39
4.8 Development and TODOs . 41

5 The name 43

6 The team 45

Python Module Index 47

Index 49

i

ii

b2luigi Documentation, Release 0.9.0

b2luigi — bringing batch 2 luigi!

b2luigi is a helper package for luigi for scheduling large luigi workflows on a batch system. It is as simple as

import b2luigi

class MyTask(b2luigi.Task):
def output(self):

return b2luigi.LocalTarget("output_file.txt")

def run(self):
with self.output().open("w") as f:

f.write("This is a test\n")

if __name__ == "__main__":
b2luigi.process(MyTask(), batch=True)

Jump right into it with out Quick Start.

If you have never worked with luigi before, you may want to have a look into the luigi documentation. But you can
learn most of the nice features also from this documentation!

Attention: The API of b2luigi is still under construction. Please remember this when using the package in
production!

Contents 1

https://luigi.readthedocs.io/en/stable

b2luigi Documentation, Release 0.9.0

2 Contents

CHAPTER 1

Why not use the already created batch tasks?

Luigi already contains a large set of tasks for scheduling and monitoring batch jobs1. But for thousands of tasks in
very large projects with different task-defining libraries, you have some problems:

• You want to run many (many many!) batch jobs in parallel In other luigi batch implementations, for every
running batch job you also need a running task that monitors it. On most of the systems, the maximal number
of processes is limited per user, so you will not be able to run more batch jobs than this. But what do you do if
you have thousands of tasks to do?

• You have already a large set of luigi tasks in your project In other implementations you either have to override
a work function (and you are not allowed to touch the run function) or they can only run an external command,
which you need to define. The first approach plays not well when mixing non-batch and batch task libraries and
the second has problems when you need to pass complex arguments to the external command (via command
line).

• You do not know which batch system you will run on Currently, the batch tasks are mostly defined for a
specific batch system. But what if you want to switch from AWS to Azure? From LSF to SGE?

Entering b2luigi, which tries to solve all this (but was heavily inspired by the previous implementations):

• You can run as many tasks as your batch system can handle in parallel! There will only be a single process
running on your submission machine.

• No need to rewrite your tasks! Just call them with b2luigi.process(.., batch=True) or with
python file.py --batch and you are ready to go!

• Switching the batch system is just a single change in a config file or one line in python. In the future, there will
even be an automatic discovery of the batch system to use.

1 https://github.com/spotify/luigi/blob/master/luigi/contrib/sge.py

3

https://github.com/spotify/luigi/blob/master/luigi/contrib/sge.py

b2luigi Documentation, Release 0.9.0

4 Chapter 1. Why not use the already created batch tasks?

CHAPTER 2

Is this the only thing I can do with b2luigi?

As b2luigi should help you with large luigi projects, we have also included some helper functionalities for luigi
tasks and task handling. b2luigi task is a super-hero version of luigi task, with simpler handling for output and
input files. Also, we give you working examples and best-practices for better data management and how to accomplish
your goals, that we have learned with time.

5

b2luigi Documentation, Release 0.9.0

6 Chapter 2. Is this the only thing I can do with b2luigi?

CHAPTER 3

Why are you still talking, lets use it!

Have a look into the Quick Start.

You can also start reading the API Documentation or the code on github.

If you find any bugs or want to improve the documentation, please send me a pull request.

This project is in beta. Please be extra cautious when using in production mode. You can help me by working with
one of the todo items described in Development and TODOs.

7

https://github.com/nils-braun/b2luigi

b2luigi Documentation, Release 0.9.0

8 Chapter 3. Why are you still talking, lets use it!

CHAPTER 4

Content

4.1 Installation

This installation description is for the general user. If you are using the Belle II software, see below:

1. Setup your local environment. For example, run:

source venv/bin/activate

2. Install b2luigi from pipy into your environment.

a. If you have a local installation, you can use the normal setup command

python -m pip install b2luigi

b. If this fails because you do not have write access to where your virtual environment lives, you can also
install b2luigi locally:

python -m pip install --user b2luigi

This will automatically also install luigi into your current environment. Please make sure to always setup your
environment correctly before using b2luigi.

Now you can go on with the Quick Start.

4.1.1 b2luigi and Belle II

1. Setup your local environment. You can use a local environment (installed on your machine) or a release on
cvmfs. For example, run:

source /cvmfs/belle.cern.ch/tools/b2setup prerelease-02-00-00c

Or you setup your local installation

9

b2luigi Documentation, Release 0.9.0

cd release-directory
source tools-directory/b2setup

2. Install b2luigi from pipy into your environment.

a. If you have a local installation, you can use the normal setup command

python -m pip install b2luigi --upgrade

b. If you are using an installation from cvmfs, you need to add the user flag.

python -m pip install --user b2luigi --upgrade

Attention: The examples in this documentation are all shown with calling python, assuming this refers to the
Python 3 executable of their (virtual) environment. In some systems and e.g. basf2 environments, python refers
to Python 2 (not supported by b2luigi). Then, python3 should be used instead.

Please also have a look into the Belle II specific examples.

4.2 Quick Start

We use a very simple task definition file and submit it to a LSF batch system.

Hint: The default batch system currently is LSF, so if you do not change it, LSF will be used. Check out Batch
Processing for more information.

Our task will be very simple: we want to create 100 files with some random number in it. Later, we will build the
average of those numbers.

1. Open a code editor and create a new file simple-example.py with the following content:

1 import b2luigi
2 import random
3

4

5 class MyNumberTask(b2luigi.Task):
6 some_parameter = b2luigi.IntParameter()
7

8 def output(self):
9 return b2luigi.LocalTarget(f"results/output_file_{self.some_

→˓parameter}.txt")
10

11 def run(self):
12 random_number = random.random()
13 with self.output().open("w") as f:
14 f.write(f"{random_number}\n")
15

16

17 if __name__ == "__main__":
18 b2luigi.set_setting("result_dir", "results")
19 b2luigi.process([MyNumberTask(some_parameter=i) for i in range(100)],
20 workers=200)

10 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

Each building block in (b2)luigi is a b2luigi.Task. It defines (which its run function), what
should be done. A task can have parameters, as in our case the some_parameter defined in line
6. Each task needs to define, what it will output in its output function.

Note: We have defined a result path in the script with

b2luigi.set_setting("results")

You can ignore that for not - we will come back to it later.

In our run function, we generate a random number and write it to the output file, which is named
after the parameter of the task and stored in a result folder.

Hint: For those of you who have already used luigi most of this seems familiar. Actually,
b2luigi’s task is a superset of luigi’s, so you can reuse your old scripts! b2luigi will not
care, which one you are using. But we strongly advice you to use b2luigi’s task, as it has some
more superior functions (see below).

Please not that we could have imported b2luigi with

import b2luigi as luigi

to make the transition between b2luigi and luigi even simpler.

2. Call the newly created file with python:

python simple-example.py --batch

Instead of giving the batch parameter in as argument, you can also add it to the luigi.process(..,
batch=True) call.

Each task will be scheduled as a batch job to your LSF queue. Using the dependency management of luigi,
the batch jobs are only scheduled when all dependencies are fulfilled saving you some unneeded CPU time on
the batch system. This means although you have requested 200 workers, you only need 100 workers to fulfill
the tasks, so only 100 batch jobs will be started. On your local machine runs only the scheduling mechanism
needing only a small amount of a single CPU power.

Hint: If you have no LSF queue ready or you do not want to run on the batch, you can also remove the batch
argument. This will fall back to a normal luigi execution. Please see Batch Processing for more information
on batch execution and the discussion of other batch systems.

3. After the job is completed, you will see something like:

The log files for each task are written to the logs folder.

After a job is submitted, b2luigiwill check if it is still running or not and handle failed or done tasks correctly.

4. The defined output file names will in most of the cases depend on the parameters of the task, as you do not want
to override your files from different tasks. However this means, you always need to include all parameters in the
file name to keep them different. This cumbersome work can be handled by b2luigi automatically , which
will also help you ordering your files at no cost. This is especially useful in larger projects, when many people
are defining and executing tasks.

This code listing shows the same task, but this time written using the helper functions given by b2luigi.

4.2. Quick Start 11

b2luigi Documentation, Release 0.9.0

1 import b2luigi
2 import random
3

4

5 class MyNumberTask(b2luigi.Task):
6 some_parameter = b2luigi.IntParameter()
7

8 def output(self):
9 yield self.add_to_output("output_file.txt")

10

11 def run(self):
12 random_number = random.random()
13

14 with open(self.get_output_file_name("output_file.txt"), "w") as f:
15 f.write(f"{random_number}\n")
16

17

18 if __name__ == "__main__":
19 b2luigi.set_setting("result_dir", "results")
20 b2luigi.process([MyNumberTask(some_parameter=i) for i in range(100)],
21 workers=200)

Before continuing, remove the output of the former calculation.

rm -rf results

If you now call

python simple-example.py --batch

you are basically doing the same as before, with some very nice benefits:

• The parameter values are automatically added to the output file (have a look into the results/ folder to
see how it works and where the results are stored)

• The output for different parameters are stored on different locations, so no need to fear overriding results.

• The format of the folder structure makes it easy to work on it using bash commands as well as automated
procedures.

• Other files related to your job, e.g. the submission files etc. are also placed into this folder (this is why the
very first example defined it already).

• The default is to use the folder where your script is located.

Hint: In the example, the base path for the results is defined in the python file with

b2luigi.set_setting("result_dir", "results")

Instead, you can also add a settings.json with the following content in the folder where your script lives:

{
"result_dir": "results"

}

The settings.json will be used by all tasks in this folder and in each sub-folder. You can use it to define
project settings (like result folders) and specific settings for your local sub project. Read the documentation on
b2luigi.get_setting() for more information on how to use it.

12 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

Attention: The result path (as well as any other paths, e.g. the log folders) are always evaluated relatively
to your script file. This means results will always be created in the folder where your script is, not where
your current working directory is. If you are unsure on the location, call

python simple-example.py --show-output

More on file systems is described in Batch Processing, which is also mostly true for non-batch calculations.

5. Let’s add some more tasks to our little example. We want to use the currently created files and add them all
together to an average number. So edit your example file to include the following content:

1 import b2luigi
2 import random
3

4

5 class MyNumberTask(b2luigi.Task):
6 some_parameter = b2luigi.Parameter()
7

8 def output(self):
9 yield self.add_to_output("output_file.txt")

10

11 def run(self):
12 random_number = random.random()
13

14 with open(self.get_output_file_name("output_file.txt"), "w") as f:
15 f.write(f"{random_number}\n")
16

17

18 class MyAverageTask(b2luigi.Task):
19 def requires(self):
20 for i in range(100):
21 yield self.clone(MyNumberTask, some_parameter=i)
22

23 def output(self):
24 yield self.add_to_output("average.txt")
25

26 def run(self):
27 # Build the mean
28 summed_numbers = 0
29 counter = 0
30 for input_file in self.get_input_file_names("output_file.txt"):
31 with open(input_file, "r") as f:
32 summed_numbers += float(f.read())
33 counter += 1
34

35 average = summed_numbers / counter
36

37 with open(self.get_output_file_name("average.txt"), "w") as f:
38 f.write(f"{average}\n")
39

40

41 if __name__ == "__main__":
42 b2luigi.set_setting("result_dir", "results")
43 b2luigi.process(MyAverageTask(), workers=200)

See how we defined dependencies in line 19 with the requires function. By calling clone we make sure
that any parameters from the current task (which are none in our case) are copied to the dependencies.

4.2. Quick Start 13

b2luigi Documentation, Release 0.9.0

Hint: Again, expert luigi users will not see anything new here.

By using the helper functions b2luigi.Task.get_input_file_names() and b2luigi.Task.
get_output_file() the output file name generation with parameters is transparent to you as a user. Super
easy!

When you run the script, you will see that luigi detects your already run files from before (the random
numbers) and will not run the task again! It will only output a file in results/average.txt with a number near 0.5.

You are now ready to read some more documentation in API Documentation or have a look into the FAQ. Please also
check out the different Run Modes.

4.3 Batch Processing

As shown in Quick Start, using the batch instead of local processing is really just a --batch on the command line or
calling process with batch=True. However, there is more to discover!

4.3.1 Choosing the batch system

Using b2luigi’s settings mechanism (described here b2luigi.get_setting()) you can choose which batch
system should be used. Currently, htcondor and lsf are supported. There is also an experimental wrapper for
gbasf2, the Belle II submission tool for the LHC Worlwide Computing Grid, which works for Basf2PathTask
tasks. More will come soon (PR welcome!).

4.3.2 Choosing the Environment

If you are doing a local calculation, all calculated tasks will use the same environment (e.g. $PATH setting, libraries
etc.) as you have currently set up when calling your script(s). This makes it predictable and simple.

Things get a bit more complicated when using a batch farm, as the workers might not have the same environment set
up, the batch submission does not copy the environment (or the local site administrators have forbidden that) or the
system on the workers is so different that copying the environment from the scheduling machine does not make sense.

Therefore b2luigi provides you with three mechanism to set the environment for each task:

• You can give a bash script in the env_script setting (via set_setting(), settings.json or for each
task as usual, see b2luigi.get_setting()), which will be called even before anything else on the worker.
Use it to set up things like the path variables or the libraries (e.g. when you are using a virtual environment) and
your batch system does not support environment copy from the scheduler to the workers. For example a useful
script might look like this:

Source my virtual environment
source venv/bin/activate
Set some specific settings
export MY_IMPORTANT_SETTING 10

• You can set the env setting to a dictionary, which contains additional variables to be set up before your job
runs. Using the mechanism described in b2luigi.get_setting() it is possible to make this task- or even
parameter-dependent.

• By default, b2luigi re-uses the same python executable on the workers as you used to schedule the tasks
(by calling your script). In some cases, this specific python executable is not present on the worker or is not
usable (e.g. because of different operation systems or architectures). You can choose a new executable with the

14 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

executable setting (it is also possible to just use python3 as the executable assuming it is in the path). The
executable needs to be callable after your env_script or your specific env settings are used. Please note,
that the environment setting is a list, so you need to pass your python executable with possible arguments
like this:

b2luigi.set_setting("executable", ["python3"])

4.3.3 File System

Depending on your batch system, the filesystem on the worker processing the task and the scheduler machine can
be different or even unrelated. Different batch systems and batch systems implementations treat this fact differently.
In the following, the basic procedure and assumption is explained. Any deviation from this is described in the next
section.

By default, b2luigi needs at least two folders to be accessible from the scheduling as well as worker machine: the
result folder and the folder of your script(s). If possible, use absolute paths for the result and log directory to prevent
any problems. Some batch systems (e.g. htcondor) support file copy mechanisms from the scheduler to the worker
systems. Please checkout the specifics below.

Hint: All relative paths given to e.g. the result_dir or the log_dir are always evaluated relative to the folder
where your script lives. To prevent any disambiguities, try to use absolute paths whenever possible.

Some batch system starts the job in an arbitrary folder on the workers instead of the current folder on the scheduler.
That is why b2luigi will change the directory into the path of your called script before starting the job.

In case your script is accessible from a different location on the worker than on the scheduling machine, you can give
the setting working_dir to specify where the job should run. Your script needs to be in this folder and every relative
path (e.g. for results or log) will be evaluated from there.

4.3.4 Drawbacks of the batch mode

Although the batch mode has many benefits, it would be unfair to not mention its downsides:

• You have to choose the queue/batch settings/etc. depending in your requirements (e.g. wall clock time) by
yourself. So you need to make sure that the tasks will actually finish before the batch system kills them because
of timeout. There is just no way for b2luigi to know this beforehand.

• There is currently no resubmission implemented. This means dying jobs because of batch system failures are
just dead. But because of the dependency checking mechanism of luigi it is simple to just redo the calculation
and re-calculate what is missing.

• The luigi feature to request new dependencies while task running (via yield) is not implemented for the
batch mode so far.

4.3.5 Batch System Specific Settings

Every batch system has special settings. You can look them up here:

LSF

class b2luigi.batch.processes.lsf.LSFProcess(*args, **kwargs)
Bases: b2luigi.batch.processes.BatchProcess

4.3. Batch Processing 15

b2luigi Documentation, Release 0.9.0

Reference implementation of the batch process for a LSF batch system.

Additional to the basic batch setup (see Batch Processing), there are LSF-specific settings. These are:

• the LSF queue: queue.

• the LSF job name: job_name.

For example:

class MyLongTask(b2luigi.Task):
queue = "l"
job_name = "my_long_task"

The default queue is the short queue "s". If no job_name is set the task will appear as

<result_dir>/parameter1=value/.../executable_wrapper.sh"

when running bjobs.

• By default, the environment variables from the scheduler are copied to the workers. This also applies we
start in the same working directory and can reuse the same executable etc. Normally, you do not need to
supply env_script or alike.

HTCondor

class b2luigi.batch.processes.htcondor.HTCondorProcess(*args, **kwargs)
Bases: b2luigi.batch.processes.BatchProcess

Reference implementation of the batch process for a HTCondor batch system.

Additional to the basic batch setup (see Batch Processing), additional HTCondor-specific things are:

• Please note that most of the HTCondor batch farms do not have the same environment setup on submis-
sion and worker machines, so you probably want to give an env_script, an env setting and/or a
different executable.

• HTCondor supports copying files from submission to workers. This means if the folder of your
script(s)/python project/etc. is not accessible on the worker, you can copy it from the submission ma-
chine by adding it to the setting transfer_files. This list can host both folders and files. Please
note that due to HTCondors file transfer mechanism, all specified folders and files will be copied into
the worker node flattened, so if you specify a/b/c.txt you will end up with a file c.txt. If you use the
transfer_files mechanism, you need to set the working_dir setting to “.” as the files will end up
in the current worker scratch folder. All specified files/folders should be absolute paths.

Hint: Please do not specify any parts or the full results folder. This will lead to unexpected behavior. We
are working on a solution to also copy results, but until this the results folder is still expected to be shared.

If you copy your python project using this setting to the worker machine, do not forget to actually set it up
in your setup script. Additionally, you might want to copy your settings.json as well.

• Via the htcondor_settings setting you can provide a dict as a for additional options, such as re-
quested memory etc. Its value has to be a dictionary containing HTCondor settings as key/value pairs.
These options will be written into the job submission file. For an overview of possible settings refer to the
HTCondor documentation.

• Same as for the LSF, the job_name setting allows giving a meaningful name to a group of
jobs. If you want to be htcondor-specific, you can provide the JobBatchName as an entry in the

16 Chapter 4. Content

https://htcondor.readthedocs.io/en/latest/users-manual/submitting-a-job.html

b2luigi Documentation, Release 0.9.0

htcondor_settings dict, which will override the global job_name setting. This is useful for man-
ually checking the status of specific jobs with

condor_q -batch <job name>

Example

1 import b2luigi
2 import random
3

4

5 class MyNumberTask(b2luigi.Task):
6 some_parameter = b2luigi.IntParameter()
7

8 htcondor_settings = {
9 "request_cpus": 1,

10 "request_memory": "100 MB"
11 }
12

13 def output(self):
14 yield self.add_to_output("output_file.txt")
15

16 def run(self):
17 print("I am now starting a task")
18 random_number = random.random()
19

20 if self.some_parameter == 3:
21 raise ValueError
22

23 with open(self.get_output_file_name("output_file.txt"), "w") as f:
24 f.write(f"{random_number}\n")
25

26

27 class MyAverageTask(b2luigi.Task):
28 htcondor_settings = {
29 "request_cpus": 1,
30 "request_memory": "200 MB"
31 }
32

33 def requires(self):
34 for i in range(10):
35 yield self.clone(MyNumberTask, some_parameter=i)
36

37 def output(self):
38 yield self.add_to_output("average.txt")
39

40 def run(self):
41 print("I am now starting the average task")
42

43 # Build the mean
44 summed_numbers = 0
45 counter = 0
46 for input_file in self.get_input_file_names("output_file.txt"):
47 with open(input_file, "r") as f:
48 summed_numbers += float(f.read())
49 counter += 1

(continues on next page)

4.3. Batch Processing 17

b2luigi Documentation, Release 0.9.0

(continued from previous page)

50

51 average = summed_numbers / counter
52

53 with open(self.get_output_file_name("average.txt"), "w") as f:
54 f.write(f"{average}\n")
55

56

57 if __name__ == "__main__":
58 b2luigi.process(MyAverageTask(), workers=200, batch=True)

GBasf2 Wrapper for LCG

class b2luigi.batch.processes.gbasf2.Gbasf2Process(*args, **kwargs)
Bases: b2luigi.batch.processes.BatchProcess

Batch process for working with gbasf2 projects on the LHC Computing Grid (LCG).

Features

• gbasf2 project submission

The gbasf2 batch process takes the basf2 path returned by the create_path() method of the task,
saves it into a pickle file to the disk and creates a wrapper steering file that executes the saved path.
Any basf2 variable aliases added in the create_path() method are also stored in the pickle file.
It then sends both the pickle file and the steering file wrapper to the grid via the BelleII-specific
Dirac-wrapper gbasf2.

• Project status monitoring

After the project submission, the gbasf batch process regularly checks the status of all the jobs be-
longing to a gbasf2 project returns a success if all jobs had been successful, while a single failed job
results in a failed project. You can close a running b2luigi process and then start your script again and
if a task with the same project name is running, this b2luigi gbasf2 wrapper will recognize that and
instead of resubmitting a new project, continue monitoring the running project.

Hint: The outputs of gbasf2 tasks can be a bit overwhelming, so I recommend using the central
scheduler which provides a nice overview of all tasks in the browser, including a status/progress
indicator how many jobs in a gbasf2 project are already done.

• Automatic download of datasets and logs

If all jobs had been successful, it automatically downloads the output dataset and the log files from
the job sandboxes and automatically checks if the download was successful before moving the data
to the final location. On failure, it only downloads the logs. The dataset download can be optionally
disabled.

• Automatic rescheduling of failed jobs

Whenever a job fails, gbasf2 reschedules it as long as the number of retries is below the value of
the setting gbasf2_max_retries. It keeps track of the number of retries in a local file in the
log_file_dir, so that it does not change if you close b2luigi and start it again. Of course it does
not persist if you remove that file or move to a different machine.

18 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

Note: Despite all the automatization that this gbasf2 wrapper provides, the user is expected to have a basic
understanding of how the grid works and know the basics of working with gbasf2 commands manually.

Caveats

• The gbasf2 batch process for luigi can only be used for tasks inhereting from Basf2PathTask or
other tasks with a create_path() method that returns a basf2 path.

• It can be used only for pickable basf2 paths, with only some limited global basf2 state saved (cur-
rently aliases and global tags). The batch process stores the path created by create_path in a
python pickle file and runs that on the grid. Therefore, python basf2 modules are not yet sup-
ported. To see if the path produced by a steering file is pickable, you can try to dump it with basf2
--dump-path and execute it again with basf2 --execute-path.

• Output format: Changing the batch to gbasf2 means you also have to adapt how you handle the output
of your gbasf2 task in tasks depending on it, because the output will not be a single root file anymore
(e.g. B_ntuple.root), but a collection of root files, one for each file in the input data set, in a
directory with the base name of the root files, e.g.:

<task output directory>
B_ntuple.root

B_ntuple_0.root
B_ntuple_1.root
...

D_ntuple.root
D_ntuple_0.root
...

Settings for gbasf2 tasks

To submit a task with the gbasf2 wrapper, you first you have to add the property batch_system
= "gbasf2", which sets the batch_system setting. It is not recommended to set that setting
globally, as not all tasks can be submitted to the grid, but only tasks with a create_path
method.

For gbasf2 tasks it is further required to set the settings

• gbasf2_input_dataset: String with the logical path of a dataset on the grid to use as
an input to the task. You can provide multiple inputs by having multiple paths contained in
this string, separated by commas without spaces. An alternative is to just instantiate multiple
tasks with different input datasets, if you want to know in retrospect which input dataset had
been used for the production of a specific output.

• gbasf2_input_dslist: Alternatively to gbasf2_input_dataset, you can use
this setting to provide a text file containing the logical grid path names, one per line.

• gbasf2_project_name_prefix: A string with which your gbasf2 project names will
start. To ensure the project associate with each unique task (i.e. for each of luigi parameters)
is unique, the unique task.task_id is hashed and appended to the prefix to create the
actual gbasf2 project name. Should be below 22 characters so that the project name with the
hash can remain under 32 characters.

The following example shows a minimal class with all required options to run on the gbasf2/grid
batch:

class MyTask(Basf2PathTask):
batch_system = "gbasf2"

(continues on next page)

4.3. Batch Processing 19

b2luigi Documentation, Release 0.9.0

(continued from previous page)

gbasf2_project_name_prefix = b2luigi.Parameter(significant=False)
gbasf2_input_dataset = b2luigi.Parameter(hashed=True)

Other not required, but noteworthy settings are:

• gbasf2_install_directory: Directory where gbasf2 is installed. Defaults to /
cvmfs/belle.kek.jp/grid/gbasf2/pro/../.., which should point to the
latest gbasf2 release.

• gbasf2_release: Defaults to the release of your currently set up basf2 release. Set this
if you want the jobs to use another release on the grid.

• gbasf2_proxy_lifetime: Defaults to 24. When initializing a proxy, set the lifetime to
this number of hours.

• gbasf2_min_proxy_lifetime: Defaults to 0. During processing, prompt user to
reinitialize proxy if remaining proxy lifetime drops below this number of hours.

• gbasf2_print_status_updates: Defaults to True. By setting it to False you can
turn off the printing of of the job summaries, that is the number of jobs in different states in
a gbasf2 project.

• gbasf2_max_retries: Default to 0. Maximum number of times that each job in the
project can be automatically rescheduled until the project is declared as failed.

• gbasf2_proxy_group: Default to "belle". If provided, the gbasf2 wrapper will
work with the custom gbasf2 group, specified in this parameter. No need to specify this
parameter in case of usual physics analysis at Belle II. If specified, one has to provide
gbasf2_project_lpn_path parameter.

• gbasf2_project_lpn_path: Path to the LPN folder for a specified gbasf2 group. The
parameter has no effect unless the gbasf2_proxy_group is used with non-default value.

• gbasf2_download_dataset: Defaults to True. Disable this setting if you don’t
want to download the output dataset from the grid on job success. As you can’t use
the downloaded dataset as an output target for luigi, you should then use the provided
Gbasf2GridProjectTarget, as shown in the following example:

from b2luigi.batch.processes.gbasf2 import get_unique_project_name,
→˓Gbasf2GridProjectTarget

class MyTask(Basf2PathTask):
[...]
def output(self):

project_name = get_unique_project_name(self)
return Gbasf2GridProjectTarget(project_name, task=self)

This is useful when chaining gbasf2 tasks together, as they don’t need the output locally but
take the grid datasets as input. Also useful when you just want to produce data on the grid
for other people to use.

• gbasf2_download_logs: Whether to automatically download the log output of gbasf2
projects when the task succeeds or fails. Having the logs is important for reproducibility, but
k

The following optional settings correspond to the equally named gbasf command line options
(without the gbasf_ prefix) that you can set to customize your gbasf2 project:

gbasf2_noscout, gbasf2_additional_files, gbasf2_input_datafiles,
gbasf2_n_repition_job, gbasf2_force_submission, gbasf2_cputime,

20 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

gbasf2_evtpersec, gbasf2_priority, gbasf2_jobtype, gbasf2_basf2opt

It is further possible to append arbitrary command line arguments to the gbasf2 submission command
with the gbasf2_additional_params setting. If you want to blacklist a grid site, you can e.g. add

b2luigi.set_setting("gbasf2_additional_params", "--banned_site LCG.KEK.jp")

Example Here is an example file to submit an analysis path created by the script in examples/gbasf2/
example_mdst_analysis to grid via gbasf2:

Listing 1: File: examples/gbasf2/gbasf2_example.py

1 import b2luigi
2 from b2luigi.basf2_helper.tasks import Basf2PathTask
3

4 import example_mdst_analysis
5

6

7 class AnalysisTask(Basf2PathTask):
8 # set the batch_system property to use the gbasf2 wrapper batch process

→˓for this task
9 batch_system = "gbasf2"

10 # Must define a prefix for the gbasf2 project name to submit to the grid.
11 # b2luigi will then add a hash derived from the luigi parameters to

→˓create a unique project name.
12 gbasf2_project_name_prefix = b2luigi.Parameter()
13 gbasf2_input_dataset = b2luigi.Parameter(hashed=True)
14 # Example luigi cut parameter to facilitate starting multiple projects

→˓for different cut values
15 mbc_lower_cut = b2luigi.IntParameter()
16

17 def create_path(self):
18 mbc_range = (self.mbc_lower_cut, 5.3)
19 return example_mdst_analysis.create_analysis_path(
20 d_ntuple_filename="D_ntuple.root",
21 b_ntuple_filename="B_ntuple.root",
22 mbc_range=mbc_range
23)
24

25 def output(self):
26 yield self.add_to_output("D_ntuple.root")
27 yield self.add_to_output("B_ntuple.root")
28

29

30 class AnalysisWrapperTask(b2luigi.WrapperTask):
31 """
32 We use the AnalysisWrapperTask to be able to require multiple analyse

→˓tasks with
33 different input datasets and cut values. For each parameter combination, a
34 different gbasf2 project will be submitted.
35 """
36

37 def requires(self):
38 input_dataset = \
39 "/belle/MC/release-04-01-04/DB00000774/SkimM13ax1/prod00011778/

→˓e1003/4S/r00000/mixed/11180100/udst/sub00/"\
40 "udst_000006_prod00011778_task10020000006.root"
41 # if you want to iterate over different cuts, just add more values to

→˓this list
(continues on next page)

4.3. Batch Processing 21

b2luigi Documentation, Release 0.9.0

(continued from previous page)

42 mbc_lower_cuts = [5.15, 5.2]
43 for mbc_lower_cut in mbc_lower_cuts:
44 yield AnalysisTask(
45 mbc_lower_cut=mbc_lower_cut,
46 gbasf2_project_name_prefix="luigiExample",
47 gbasf2_input_dataset=input_dataset,
48 max_event=100,
49)
50

51

52 if __name__ == '__main__':
53 main_task_instance = AnalysisWrapperTask()
54 n_gbasf2_tasks = len(list(main_task_instance.requires()))
55 b2luigi.process(main_task_instance, workers=n_gbasf2_tasks)

Handling failed jobs The gbasf2 input wrapper considers the gbasf2 project as failed if any of the jobs in
the project failed and reached the maximum number of retries. It then automatically downloads the
logs, so please look into them to see what the reason was. For example, it can be that only certain
grid sites were affected, so you might want to exclude them by adding the "--banned_site ...
to gbasf2_additional_params.

You also always reschedule jobs manually with the gb2_job_reschedule command or delete them
with gb2_job_delete so that the gbasf2 batch process doesn’t know they ever existed. Then run just
run your luigi task/script again and it will start monitoring the running project again.

4.3.6 Add your own batch system

If you want to add a new batch system, all you need to do is to implement the abstract functions of BatchProcess
for your system:

class b2luigi.batch.processes.BatchProcess(task, scheduler, result_queue,
worker_timeout)

This is the base class for all batch algorithms that allow luigi to run on a specific batch system. This is an
abstract base class and inheriting classes need to supply functionalities for * starting a job using the commands in
self.task_cmd * getting the job status of a running, finished or failed job * and killing a job All those commands
are called from the main process, which is not running on the batch system. Every batch system that is capable
of these functions can in principle work together with b2luigi.

Implementation note: In principle, using the batch system is transparent to the user. In case of problems, it
may however be useful to understand how it is working.

When you start your luigi dependency tree with process(..., batch=True), the normal luigi
process is started looking for unfinished tasks and running them etc. Normally, luigi creates a process
for each running task and runs them either directly or on a different core (if you have enabled more than
one worker). In the batch case, this process is not a normal python multiprocessing process, but this
BatchProcess, which has the same interface (one can check the status of the process, start or kill it). The
process does not need to wait for the batch job to finish but is asked repeatedly for the job status. By
this, most of the core functionality of luigi is kept and reused. This also means, that every batch job only
includes a single task and is finished whenever this task is done decreasing the batch runtime. You will
need exactly as many batch jobs as you have tasks and no batch job will idle waiting for input data as all
are scheduled only when the task they should run is actually runnable (the input files are there).

What is the batch command now? In each job, we call a specific executable bash script only created for
this task. It contains the setup of the environment (if given by the user via the settings), the change of the
working directory (the directory of the python script or a specified directory by the user) and a call of this
script with the current python interpreter (the one you used to call this main file or given by the setting

22 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

executable) . However, we give this call an additional parameter, which tells it to only run one single
task. Task can be identified by their task id. A typical task command may look like:

/<path-to-your-exec>/python /your-project/some-file.py --batch-runner --task-
→˓id MyTask_38dsf879w3

if the batch job should run the MyTask. The implementation of the abstract functions is responsible for
creating an running the executable file and writing the log of the job into appropriate locations. You
can use the functions create_executable_wrapper and get_log_file_dir to get the needed
information.

Checkout the implementation of the lsf task for some implementation example.

get_job_status()
Implement this function to return the current job status. How you identify exactly your job is dependent
on the implementation and needs to be handled by your own child class.

Must return one item of the JobStatus enumeration: running, aborted, successful or idle. Will only be
called after the job is started but may also be called when the job is finished already. If the task status is
unknown, return aborted. If the task has not started already but is scheduled, return running nevertheless
(for b2luigi it makes no difference). No matter if aborted via a call to kill_job, by the batch system or by
an exception in the job itself, you should return aborted if the job is not finished successfully (maybe you
need to check the exit code of your job).

kill_job()
This command is used to abort a job started by the start_job function. It is only called once to abort a job,
so make sure to either block until the job is really gone or be sure that it will go down soon. Especially, do
not wait until the job is finished. It is called for example when the user presses Ctrl-C.

In some strange corner cases it may happen that this function is called even before the job is started (the
start_job function is called). In this case, you do not need to do anything (but also not raise an exception).

start_job()
Override this function in your child class to start a job on the batch system. It is called exactly once. You
need to store any information identifying your batch job on your own.

You can use the b2luigi.core.utils.get_log_file_dir and the b2luigi.core.
executable.create_executable_wrapper functions to get the log base name and to create
the executable script which you should call in your batch job.

After the start_job function is called by the framework (and no exception is thrown), it is assumed that a
batch job is started or scheduled.

After the job is finished (no matter if aborted or successful) we assume the stdout and stderr is written into
the two files given by b2luigi.core.utils.get_log_file_dir(self.task).

4.4 Belle II specific examples

The following examples are not of interest to the general audience, but only for basf2 users.

4.4.1 Running at the NAF

The environment on the workers is different than on the scheduling machine, so we can not just copy the environment
variables as on KEKCC.

You can use setup script (e.g. called setup_basf2.sh) with the following content

4.4. Belle II specific examples 23

b2luigi Documentation, Release 0.9.0

source /cvmfs/belle.cern.ch/tools/b2setup release-XX-XX-XX

All you have to do is specify the setup script as the env_script setting and also set the executable explicitly.

from time import sleep
import os

import b2luigi

class MyTask(b2luigi.Task):
parameter = b2luigi.IntParameter()

def output(self):
yield self.add_to_output("test.txt")

def run(self):
sleep(self.parameter)

with open(self.get_output_file_name("test.txt"), "w") as f:
f.write("Test")

class Wrapper(b2luigi.Task):
def requires(self):

for i in range(10):
yield MyTask(parameter=i)

def output(self):
yield self.add_to_output("test.txt")

def run(self):
with open(self.get_output_file_name("test.txt"), "w") as f:

f.write("Test")

if __name__ == '__main__':
Choose htcondor as our batch system
b2luigi.set_setting("batch_system", "htcondor")

Setup the correct environment on the workers
b2luigi.set_setting("env_script", "setup_basf2.sh")

Most likely your executable from the submission node is not the same on
the worker node, so specify it explicitly
b2luigi.set_setting("executable", ["python3"])

Where to store the results
b2luigi.set_setting("result_dir", "results")

b2luigi.process(Wrapper(), batch=True, workers=100)

Of course it is also possible to set those settings in the settings.json or as task-specific parameters. Please check
out b2luigi.get_setting() for more information.

Please note that the called script as well as the results folder need to be accessible from both the scheduler and the
worker machines. If needed, you can also include more setup steps in the source script.

24 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

4.4.2 Running at KEKCC

KEKCC uses LSF as the batch system. As this is the default for b2luigi there is nothing you need to do.

4.4.3 nTuple Generation

import b2luigi as luigi
from b2luigi.basf2_helper import Basf2PathTask, Basf2nTupleMergeTask

import basf2

import modularAnalysis

class AnalysisTask(Basf2PathTask):
experiment_number = luigi.IntParameter()
run_number = luigi.IntParameter()
mode = luigi.Parameter()
file_number = luigi.IntParameter()

def output(self):
Define the outputs here
yield self.add_to_output("D_n_tuple.root")
yield self.add_to_output("B_n_tuple.root")

def create_path(self):
somehow create filenames from parameters
self.experiment_number, self.run_number,
self.mode and self.file_number
(parameters just examples)
input_file_names = ..

path = basf2.create_path()
modularAnalysis.inputMdstList('default', input_file_names, path=path)

Now fill your particle lists, just examples
modularAnalysis.fillParticleLists([('K+', 'kaonID > 0.1'), ('pi+', 'pionID >

→˓0.1')],
path=path)

modularAnalysis.reconstructDecay('D0 -> K- pi+', '1.7 < M < 1.9', path=path)
modularAnalysis.fitVertex('D0', 0.1, path=path)
modularAnalysis.matchMCTruth('D0', path=path)
modularAnalysis.reconstructDecay('B- -> D0 pi-', '5.2 < Mbc < 5.3', path=path)
modularAnalysis.fitVertex('B+', 0.1, path=path)
modularAnalysis.matchMCTruth('B-', path=path)

When exporting, use the function get_output_file_name()
modularAnalysis.variablesToNtuple('D0',

['M', 'p', 'E', 'useCMSFrame(p)',
→˓'useCMSFrame(E)',

'daughter(0, kaonID)', 'daughter(1, pionID)',
→˓'isSignal', 'mcErrors'],

filename=self.get_output_file_name("D_n_tuple.
→˓root"),

path=path)
modularAnalysis.variablesToNtuple('B-',

(continues on next page)

4.4. Belle II specific examples 25

b2luigi Documentation, Release 0.9.0

(continued from previous page)

['Mbc', 'deltaE', 'isSignal', 'mcErrors', 'M
→˓'],

filename=self.get_output_file_name("B_n_tuple.
→˓root"),

path=path)
return path

class AnalysisWrapperTask(luigi.WrapperTask):
def requires(self):

somehow loop over the runs, experiment etc.
yield self.clone(AnalysisTask, experiment_number=...)

if __name__ == "__main__":
luigi.process(AnalysisWrapperTask(), workers=500)

4.4.4 Standard Simulation, Reconstruction and some nTuple Generation

import b2luigi as luigi
from b2luigi.basf2_helper import Basf2PathTask, Basf2nTupleMergeTask

from enum import Enum

import basf2

import modularAnalysis
import simulation
import vertex
import generators
import reconstruction
from ROOT import Belle2

class SimulationType(Enum):
y4s = "Y(4S)"
continuum = "Continuum"

class SimulationTask(Basf2PathTask):
n_events = luigi.IntParameter()
event_type = luigi.EnumParameter(enum=SimulationType)

def create_path(self):
path = basf2.create_path()
modularAnalysis.setupEventInfo(self.n_events, path)

if self.event_type == SimulationType.y4s:
in current main branch and release 5 the Y(4S)decay file is moved, so

→˓try old and new locations
find_file_ignore_error = True
dec_file = Belle2.FileSystem.findFile('analysis/examples/tutorials/B2A101-

→˓Y4SEventGeneration.dec',
find_file_ignore_error)

if not dec_file:
(continues on next page)

26 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

(continued from previous page)

dec_file = Belle2.FileSystem.findFile('analysis/examples/simulations/
→˓B2A101-Y4SEventGeneration.dec')

elif self.event_type == SimulationType.continuum:
dec_file = Belle2.FileSystem.findFile('analysis/examples/simulations/

→˓B2A102-ccbarEventGeneration.dec')
else:

raise ValueError(f"Event type {self.event_type} is not valid. It should
→˓be either 'Y(4S)' or 'Continuum'!")

generators.add_evtgen_generator(path, 'signal', dec_file)
modularAnalysis.loadGearbox(path)
simulation.add_simulation(path)

path.add_module('RootOutput', outputFileName=self.get_output_file_name(
→˓'simulation_full_output.root'))

return path

def output(self):
yield self.add_to_output("simulation_full_output.root")

@luigi.requires(SimulationTask)
class ReconstructionTask(Basf2PathTask):

def create_path(self):
path = basf2.create_path()

path.add_module('RootInput', inputFileNames=self.get_input_file_names(
→˓"simulation_full_output.root"))

modularAnalysis.loadGearbox(path)
reconstruction.add_reconstruction(path)

modularAnalysis.outputMdst(self.get_output_file_name("reconstructed_output.
→˓root"), path=path)

return path

def output(self):
yield self.add_to_output("reconstructed_output.root")

@luigi.requires(ReconstructionTask)
class AnalysisTask(Basf2PathTask):

def create_path(self):
path = basf2.create_path()
modularAnalysis.inputMdstList('default', self.get_input_file_names(

→˓"reconstructed_output.root"), path=path)
modularAnalysis.fillParticleLists([('K+', 'kaonID > 0.1'), ('pi+', 'pionID >

→˓0.1')], path=path)
modularAnalysis.reconstructDecay('D0 -> K- pi+', '1.7 < M < 1.9', path=path)
modularAnalysis.matchMCTruth('D0', path=path)
modularAnalysis.reconstructDecay('B- -> D0 pi-', '5.2 < Mbc < 5.3', path=path)
try: # treeFit is the new function name in light releases after release 4 (e.

→˓g. light-2002-janus)
vertex.treeFit('B+', 0.1, update_all_daughters=True, path=path)

except AttributeError: # vertexTree is the function name in release 4
vertex.vertexTree('B+', 0.1, update_all_daughters=True, path=path)

(continues on next page)

4.4. Belle II specific examples 27

b2luigi Documentation, Release 0.9.0

(continued from previous page)

modularAnalysis.matchMCTruth('B-', path=path)
modularAnalysis.variablesToNtuple('D0',

['M', 'p', 'E', 'useCMSFrame(p)',
→˓'useCMSFrame(E)',

'daughter(0, kaonID)', 'daughter(1, pionID)
→˓', 'isSignal', 'mcErrors'],

filename=self.get_output_file_name("D_n_
→˓tuple.root"),

path=path)
modularAnalysis.variablesToNtuple('B-',

['Mbc', 'deltaE', 'isSignal', 'mcErrors', 'M
→˓'],

filename=self.get_output_file_name("B_n_
→˓tuple.root"),

path=path)
return path

def output(self):
yield self.add_to_output("D_n_tuple.root")
yield self.add_to_output("B_n_tuple.root")

class AggregatorTask(Basf2nTupleMergeTask):
n_events = luigi.IntParameter()

def requires(self):
for event_type in SimulationType:

yield self.clone(AnalysisTask, event_type=event_type)

if __name__ == "__main__":
luigi.process(AggregatorTask(n_events=1), workers=4)

4.5 API Documentation

b2luigi summarizes different topics to help you in your everyday task creation and processing. Most important
is the b2luigi.process() function, which lets you run arbitrary task graphs on the batch. It is very similar to
luigi.build, but lets you hand in additional parameters for steering the batch execution.

4.5.1 Top-Level Function

4.5.2 Super-hero Task Classes

If you want to use the default luigi.Task class or any derivative of it, you are totally fine. No need to change any
of your scripts! But if you want to take advantage of some of the recipies we have developed to work with large luigi
task sets, you can use the drop in replacements from the b2luigi package. All task classes (except the b2luigi.
DispatchableTask, see below) are superclasses of a luigi class. As we import luigi into b2luigi, you
just need to replace

import luigi

with

28 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

import b2luigi as luigi

and you will have all the functionality of luigi and b2luigi without the need to change anything!

class b2luigi.Task(*args, **kwargs)
Bases: luigi.task.Task

Drop in replacement for luigi.Task which is 100% API compatible. It just adds some useful methods for
handling output file name generation using the parameters of the task. See Quick Start on information on how
to use the methods.

Example

class MyAverageTask(b2luigi.Task):
def requires(self):

for i in range(100):
yield self.clone(MyNumberTask, some_parameter=i)

def output(self):
yield self.add_to_output("average.txt")

def run(self):
Build the mean
summed_numbers = 0
counter = 0
for input_file in self.get_input_file_names("output_file.txt"):

with open(input_file, "r") as f:
summed_numbers += float(f.read())
counter += 1

average = summed_numbers / counter

with self.get_output_file("average.txt").open("w") as f:
f.write(f"{average}\n")

add_to_output(output_file_name)
Call this in your output() function to add a target to the list of files, this task will output. Always use in
combination with yield. This function will automatically add all current parameter values to the file name
when used in the form

result_dir/param_1=value/param_2=value/output_file_name

This function will automatically use a LocalTarget. If you do not want this, you can override the
_get_output_file_target function.

Example

This adds two files called some_file.txt and some_other_file.txt to the output:

def output(self):
yield self.add_to_output("some_file.txt")
yield self.add_to_output("some_other_file.txt")

Parameters output_file_name (str) – the file name of the output file. Refer to this file
name as a key when using get_input_file_names, get_output_file_names or
get_output_file.

4.5. API Documentation 29

b2luigi Documentation, Release 0.9.0

get_all_input_file_names()
Return all file paths required by this task.

Example

class TheSuperFancyTask(b2luigi.Task):

def dry_run(self):

for name in self.get_all_output_file_names(): print(f” output: {name}”)

get_all_output_file_names()
Return all file paths created by this task.

Example

class TheSuperFancyTask(b2luigi.Task):

def dry_run(self):

for name in self.get_all_output_file_names(): print(f” output: {name}”)

get_input_file_names(key=None)
Get a dictionary of input file names of the tasks, which are defined in our requirements. Either use the
key argument or dictionary indexing with the key given to add_to_output to get back a list (!) of file
paths.

Parameters key (str, optional) – If given, only return a list of file paths with this given key.

Returns If key is none, returns a dictionary of keys to list of file paths. Else, returns only the list
of file paths for this given key.

get_input_file_names_from_dict(requirement_key, key=None)
Get a dictionary of input file names of the tasks, which are defined in our requirements.

The requirement method should return a dict whose values are generator expressions (!) yielding required
task objects.

Example

class TaskB(luigi.Task):

def requires(self):
return {

"a": (TaskA(5.0, i) for i in range(100)),
"b": (TaskA(1.0, i) for i in range(100)),

}

def run(self):
result_a = do_something_with_a(

self.get_input_file_names_from_dict("a")
)
result_b = do_something_with_b(

self.get_input_file_names_from_dict("b")
)

(continues on next page)

30 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

(continued from previous page)

combine_a_and_b(
result_a,
result_b,
self.get_output_file_name("combined_results.txt")

)

def output(self):
yield self.add_to_output("combined_results.txt")

Either use the key argument or dictionary indexing with the key given to add_to_output to get back a
list (!) of file paths.

Parameters

• requirement_key (str) – Specifies the required task expression.

• key (str, optional) – If given, only return a list of file paths with this given key.

Returns If key is none, returns a dictionary of keys to list of file paths. Else, returns only the list
of file paths for this given key.

get_output_file_name(key)
Analogous to get_input_file_names this function returns a an output file defined in out output
function with the given key.

In contrast to get_input_file_names, only a single file name will be returned (as there can only be
a single output file with a given name).

Parameters key (str) – Return the file path with this given key.

Returns Returns only the file path for this given key.

class b2luigi.ExternalTask(*args, **kwargs)
Bases: b2luigi.core.task.Task, luigi.task.ExternalTask

Direct copy of luigi.ExternalTask, but with the capabilities of Task added.

class b2luigi.WrapperTask(*args, **kwargs)
Bases: b2luigi.core.task.Task, luigi.task.WrapperTask

Direct copy of luigi.WrapperTask, but with the capabilities of Task added.

b2luigi.dispatch(run_function)
In cases you have a run function calling external, probably insecure functionalities, use this function wrapper
around your run function. It basically emulates a batch submission on your local computer (without any batch
system) with the benefit of having a totally separete execution path. If your called task fails miserably (e.g.
segfaults), it does not crash your main application.

Example

The run function can include any code you want. When the task runs, it is started in a subprocess and monitored
by the parent process. When it dies unexpectedly (e.g. because of a segfault etc.) the task will be marked as
failed. If not, it is successful. The log output will be written to two files in the log folder (marked with the
parameters of the task), which you can check afterwards:

import b2luigi

class MyTask(b2luigi.Task):
@b2luigi.dispatch

(continues on next page)

4.5. API Documentation 31

b2luigi Documentation, Release 0.9.0

(continued from previous page)

def run(self):
call_some_evil_function()

Note: We are reusing the batch system implementation here, with all its settings and nobs to setup the environ-
ment etc. If you want to control it in more detail, please check out Batch Processing.

Implementation note: In the subprocess we are calling the current executable (which should by python) with
the current input file as a parameter, but let it only run this specific task (by handing over the task id and
the –batch-worker option). The run function notices this and actually runs the task instead of dispatching
again.

Additionally, you can add a cmd_prefix parameter to your class, which also needs to be a list of strings,
which are prefixed to the current command (e.g. if you want to add a profiler to all your tasks).

class b2luigi.DispatchableTask(*args, **kwargs)
Bases: b2luigi.core.task.Task

Instead of using the dispatch function wrapper, you can also inherit from this class. Except that, it has exactly
the same functionality as a normal Task.

Important: You need to overload the process function instead of the run function in this case!

process()
Override this method with your normal run function. Do not touch the run function itself!

4.5.3 Parameters

As b2luigi automatically also imports luigi, you can use all the parameters from luigi you know and love. We
have just added a single new flag called hashed to the parameters constructor. Turning it to true (it is turned off by
default) will make b2luigi use a hashed version of the parameters value, when constructing output or log file paths.
This is especially useful if you have parameters, which may include “dangerous” characters, like “/” or “{” (e.g. when
using list or dictionary parameters). See also one of our FAQ.

4.5.4 Settings

b2luigi.get_setting(key, default=None, task=None, deprecated_keys=None)
b2luigi adds a settings management to luigi and also uses it at various places. Many batch systems, the
output and log path, the environment etc. is controlled via these settings.

There are four ways settings could be defined. They are used in the following order (an earlier setting overrides
a later one):

1. If the currently processed (or scheduled) task has a property of the given name, it is used. Please note that
you can either set the property directly, e.g.

class MyTask(b2luigi.Task):
batch_system = "htcondor"

or by using a function (which might even depend on the parameters)

32 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

class MyTask(b2luigi.Task):
@property
def batch_system(self):

return "htcondor"

The latter is especially useful for batch system specific settings such as requested wall time etc.

2. Settings set directly by the user in your script with a call to b2luigi.set_setting().

3. Settings specified in the settings.json in the folder of your script or any folder above that. This
makes it possible to have general project settings (e.g. the output path or the batch system) and a specific
settings.json for your sub-project.

With this function, you can get the current value of a specific setting with the given key. If there is no setting
defined with this name, either the default is returned or, if you did not supply any default, a value error is raised.

Settings can be of any type, but are mostly strings.

Parameters

• key (str) – The name of the parameter to query.

• task – (b2luigi.Task): If given, check if the task has a parameter with this name.

• default (optional) – If there is no setting which the name, either return this default or
if it is not set, raise a ValueError.

• deprecated_keys (List) – Former names of this setting, will throw a warning when
still used

b2luigi.set_setting(key, value)
Set the setting with the specified name - overriding any setting.json. If you want to have task specific
settings, create a parameter with the given name or your task.

b2luigi.clear_setting(key)
Clear the setting with the given key

4.5.5 Other functions

b2luigi.on_temporary_files(run_function)
Wrapper for decorating a task’s run function to use temporary files as outputs.

A common problem when using long running tasks in luigi is the so called thanksgiving bug (see https://www.
arashrouhani.com/luigi-budapest-bi-oct-2015/#/21). It occurs, when you define an output of a task and in its run
function, you create this output before filling it with content (maybe even only after a long lasting calculation).
It may happen, that during the creation of the output and the finish of the calculation some other tasks checks if
the output is already there, finds it and assumes, that the task is already finished (although there is probably only
non-sense in the file so far).

A solution is already given by luigi itself, when using the temporary_path() function of the file system targets,
which is really nice! Unfortunately, this means you have to open all your output files with a context manager
and this is very hard to do if you have external tasks also (because they will probably use the output file directly
instead of the temporary file version of if).

This wrapper simplifies the usage of the temporary files:

import b2luigi

class MyTask(b2luigi.Task):
(continues on next page)

4.5. API Documentation 33

https://www.arashrouhani.com/luigi-budapest-bi-oct-2015/#/21
https://www.arashrouhani.com/luigi-budapest-bi-oct-2015/#/21

b2luigi Documentation, Release 0.9.0

(continued from previous page)

def output(self):
yield self.add_to_output("test.txt")

@b2luigi.on_temporary_files
def run(self):

with open(self.get_output_file_name("test.txt"), "w") as f:
raise ValueError()
f.write("Test")

Instead of creating the file “test.txt” at the beginning and filling it with content later (which will never happen
because of the exception thrown, which makes the file existing but the task actually not finished), the file will
be written to a temporary file first and copied to its final location at the end of the run function (but only if there
was no error).

Attention:

The decorator only edits the function get_output_file_name. If you are using the output directly, you have to
take care of using the temporary path correctly by yourself!

b2luigi.core.utils.product_dict(**kwargs)
Cross-product the given parameters and return a list of dictionaries.

Example

>>> list(product_dict(arg_1=[1, 2], arg_2=[3, 4]))
[{'arg_1': 1, 'arg_2': 3}, {'arg_1': 1, 'arg_2': 4}, {'arg_1': 2, 'arg_2': 3}, {
→˓'arg_1': 2, 'arg_2': 4}]

The thus produced list can directly be used as inputs for a required tasks:

def requires(self):
for args in product_dict(arg_1=[1, 2], arg_2=[3, 4]):

yield some_task(**args)

Parameters kwargs – Each keyword argument should be an iterable

Returns A list of kwargs where each list of input keyword arguments is cross-multiplied with every
other.

b2luigi.basf2_helper package

b2luigi.basf2_helper.data module

class b2luigi.basf2_helper.data.CdstDataTask(*args, **kwargs)
Bases: b2luigi.basf2_helper.data.DstDataTask

data_mode = 'cdst'

output()
The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task is considered finished iff the outputs
all exist. Subclasses should override this method to return a single Target or a list of Target instances.

34 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

Implementation note If running multiple workers, the output must be a resource that is accessible by all
workers, such as a DFS or database. Otherwise, workers might compute the same output since they
don’t see the work done by other workers.

See Task.output

class b2luigi.basf2_helper.data.DataMode
Bases: enum.Enum

An enumeration.

cdst = 'cdst'

mdst = 'mdst'

raw = 'raw'

skimmed_raw = 'skimmed_raw'

class b2luigi.basf2_helper.data.DataTask(*args, **kwargs)
Bases: b2luigi.core.task.ExternalTask

data_mode = <luigi.parameter.EnumParameter object>

experiment_number = <luigi.parameter.IntParameter object>

file_name = <luigi.parameter.Parameter object>

prefix = <luigi.parameter.Parameter object>

run_number = <luigi.parameter.IntParameter object>

class b2luigi.basf2_helper.data.DstDataTask(*args, **kwargs)
Bases: b2luigi.basf2_helper.data.DataTask

database = <luigi.parameter.IntParameter object>

output()
The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task is considered finished iff the outputs
all exist. Subclasses should override this method to return a single Target or a list of Target instances.

Implementation note If running multiple workers, the output must be a resource that is accessible by all
workers, such as a DFS or database. Otherwise, workers might compute the same output since they
don’t see the work done by other workers.

See Task.output

prod = <luigi.parameter.IntParameter object>

release = <luigi.parameter.Parameter object>

class b2luigi.basf2_helper.data.MdstDataTask(*args, **kwargs)
Bases: b2luigi.basf2_helper.data.DstDataTask

data_mode = 'mdst'

output()
The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task is considered finished iff the outputs
all exist. Subclasses should override this method to return a single Target or a list of Target instances.

Implementation note If running multiple workers, the output must be a resource that is accessible by all
workers, such as a DFS or database. Otherwise, workers might compute the same output since they
don’t see the work done by other workers.

4.5. API Documentation 35

b2luigi Documentation, Release 0.9.0

See Task.output

class b2luigi.basf2_helper.data.RawDataTask(*args, **kwargs)
Bases: b2luigi.basf2_helper.data.DataTask

data_mode = 'raw'

output()
The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task is considered finished iff the outputs
all exist. Subclasses should override this method to return a single Target or a list of Target instances.

Implementation note If running multiple workers, the output must be a resource that is accessible by all
workers, such as a DFS or database. Otherwise, workers might compute the same output since they
don’t see the work done by other workers.

See Task.output

class b2luigi.basf2_helper.data.SkimmedRawDataTask(*args, **kwargs)
Bases: b2luigi.basf2_helper.data.DstDataTask

data_mode = 'skimmed_raw'

output()
The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task is considered finished iff the outputs
all exist. Subclasses should override this method to return a single Target or a list of Target instances.

Implementation note If running multiple workers, the output must be a resource that is accessible by all
workers, such as a DFS or database. Otherwise, workers might compute the same output since they
don’t see the work done by other workers.

See Task.output

b2luigi.basf2_helper.data.clone_on_cdst(self, task_class, experiment_number, run_number,
release, prod, database, prefix=None,
file_name=None, **additional_kwargs)

b2luigi.basf2_helper.data.clone_on_mdst(self, task_class, experiment_number, run_number,
release, prod, database, prefix=None,
file_name=None, **additional_kwargs)

b2luigi.basf2_helper.data.clone_on_raw(self, task_class, experiment_number, run_number,
prefix=None, file_name=None, **addi-
tional_kwargs)

b2luigi.basf2_helper.data.clone_on_skimmed_raw(self, task_class, experiment_number,
run_number, release, prod, database,
prefix=None, file_name=None, **addi-
tional_kwargs)

b2luigi.basf2_helper.targets module

class b2luigi.basf2_helper.targets.ROOTLocalTarget(path=None, format=None,
is_tmp=False)

Bases: luigi.local_target.LocalTarget

exists()
Returns True if the path for this FileSystemTarget exists; False otherwise.

This method is implemented by using fs.

36 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

b2luigi.basf2_helper.tasks module

class b2luigi.basf2_helper.tasks.Basf2FileMergeTask(*args, **kwargs)
Bases: b2luigi.basf2_helper.tasks.MergerTask

cmd = ['b2file-merge', '-f']

class b2luigi.basf2_helper.tasks.Basf2PathTask(*args, **kwargs)
Bases: b2luigi.basf2_helper.tasks.Basf2Task

create_path()

max_event = <luigi.parameter.IntParameter object>

num_processes = <luigi.parameter.IntParameter object>

process()
Override this method with your normal run function. Do not touch the run function itself!

class b2luigi.basf2_helper.tasks.Basf2Task(*args, **kwargs)
Bases: b2luigi.core.dispatchable_task.DispatchableTask

get_output_file_target(*args, **kwargs)

get_serialized_parameters()

git_hash = <luigi.parameter.Parameter object>

class b2luigi.basf2_helper.tasks.Basf2nTupleMergeTask(*args, **kwargs)
Bases: b2luigi.basf2_helper.tasks.MergerTask

cmd
Command to use to merge basf2 tuple files.

class b2luigi.basf2_helper.tasks.HaddTask(*args, **kwargs)
Bases: b2luigi.basf2_helper.tasks.MergerTask

cmd = ['hadd', '-f']

class b2luigi.basf2_helper.tasks.MergerTask(*args, **kwargs)
Bases: b2luigi.basf2_helper.tasks.Basf2Task

cmd = []

output()
The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task is considered finished iff the outputs
all exist. Subclasses should override this method to return a single Target or a list of Target instances.

Implementation note If running multiple workers, the output must be a resource that is accessible by all
workers, such as a DFS or database. Otherwise, workers might compute the same output since they
don’t see the work done by other workers.

See Task.output

process()
Override this method with your normal run function. Do not touch the run function itself!

class b2luigi.basf2_helper.tasks.SimplifiedOutputBasf2Task(*args, **kwargs)
Bases: b2luigi.basf2_helper.tasks.Basf2PathTask

create_path()

4.5. API Documentation 37

b2luigi Documentation, Release 0.9.0

output()
The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task is considered finished iff the outputs
all exist. Subclasses should override this method to return a single Target or a list of Target instances.

Implementation note If running multiple workers, the output must be a resource that is accessible by all
workers, such as a DFS or database. Otherwise, workers might compute the same output since they
don’t see the work done by other workers.

See Task.output

b2luigi.basf2_helper.utils module

b2luigi.basf2_helper.utils.get_basf2_git_hash()

4.6 Run Modes

The run mode can be chosen by calling your python file with

python file.py --mode

or by calling b2luigi.process with a given mode set to True

b2luigi.process(.., mode=True)

where mode can be one of:

• batch: Run the tasks on a batch system, as described in Quick Start. The maximal number of batch jobs to
run in parallel (jobs in flight) is equal to the number of workers. This is 1 by default, so you probably want
to change this. By default, LSF is used as a batch system. If you want to change this, set the corresponding
batch_system (see Batch Processing) to one of the supported systems.

• dry-run: Similar to the dry-run funtionality of luigi, this will not start any tasks but just tell you, which tasks
it would run, and call the dry_run method of the task if implemented:

class SomeTask(b2luigi.Task):
[...]
def dry_run(self):

if a method with this name is provided, it will be executed
automatically when starting the processing in dry-run mode
do_some_stuff_in_dry_run_mode()

This feature can be easily used for e.g. file name debugging, i.e. to print out the file names b2luigi will
create when running the actual task. The exit code of the dry-run mode is 1 in case a task needs to run and 0
otherwise.

• show-output: List all output files that this has produced/will produce. Files which already exist (where the
targets define, what exists mean in this case) are marked as green whereas missing targets are marked red.

• test: Run the tasks normally (no batch submission), but turn on debug logging of luigi. Also, do not dispatch
any task (if requested) and print the output to the console instead of in log files.

Additional console arguments:

• –scheduler-host and –scheduler-port: If you have set up a central scheduler, you can pass this information
here easily. This works for batch or non-batch submission but is turned of for the test mode.

38 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

4.6.1 Start a Central Scheduler

When the number of tasks grows, it is sometimes hard to keep track of all of them (despite the summary in the end).
For this, luigi (the parent project of b2luigi) brings a nice visualisation and scheduling tool called the central
scheduler.

To start this you need to call the luigid executable. Where to find this depends on your installation type:

a. If you have a installed b2luigi without user flag, you can just call the executable as it is already in your path:

luigid --port PORT

b. If you have a local installation, luigid is installed into your home directory:

~/.local/bin/luigid --port PORT

The default port is 8082, but you can choose any non-occupied port.

The central scheduler will register the tasks you want to process and keep track of which tasks are already done.

To use this scheduler, call b2luigi by giving the connection details:

python simple-task.py [--batch] --scheduler-host HOST --scheduler-port PORT

which works for batch as well as non-batch jobs. You can now visit the url http://HOST:PORT with your browser and
see a nice summary of the current progress of your tasks.

4.7 FAQ

4.7.1 Can I specify my own paths for the log files for tasks running on a batch
system?

b2luigi will automatically create log files for the stdout and stderr output of a task processed on a batch
system. The paths of these log files are defined relative to the location of the executed python file and contain the
parameter of the task. In some cases one might one to specify other paths for the log files. To achieve this, a own
get_log_file_dir() method of the task class must be implemented. This method must return a directory path
for the stdout and the stderr files, for example:

class MyBatchTask(b2luigi.Task):
...
def get_log_file_dir(self):

filename = os.path.realpath(sys.argv[0])
path = os.path.join(os.path.dirname(filename), "logs")
return path

b2luigi will use this method if it is defined and write the log output in the respective files. Be careful, though, as
these log files will of course be overwritten if more than one task receive the same paths to write to!

4.7.2 Can I exclude one job from batch processing

The setting batch_system defines which submission method is used for scheduling your tasks when using
batch=True or --batch. In most cases, you set your batch_system globally (e.g. in a settings.json)
file and start all your tasks with --batch or batch=True. If you want a single task to run only locally (e.g. because
of constraints in the batch farm) you can set the batch_system only for this job by adding a member to this task:

4.7. FAQ 39

http://HOST:PORT

b2luigi Documentation, Release 0.9.0

class MyLocalTask(b2luigi.Task):
batch_system = "local"

def run(self):
...

4.7.3 How do I handle parameter values which include “/” (or other unusual char-
acters)?

b2luigi automatically generates the filenames for your output or log files out of the current tasks values in the form:

<result-path>/param1=value1/param2=value2/..../filename.ext

The values are given by the serialisation of your parameter, which is basically its string representation. Sometimes,
this representation may include characters not suitable for their usage as a path name, e.g. “/”. Especially when you
use a DictParameter or a ListParameter, you might not want to have its value in your output. Also, if you
have credentials in the parameter (what you should never do of course!), you do not want to show them to everyone.

When using a parameter in b2luigi (or any of its derivatives), they have a new flag called hashed in their constructor,
which makes the path creation only using a hashed version of your parameter value.

For example will this task:

class MyTask(b2luigi.Task):
my_parameter = b2luigi.ListParameter(hashed=True)

def run(self):
with open(self.get_output_file_name("test.txt"), "w") as f:

f.write("test")

def output(self):
yield self.add_to_output("test.txt")

if __name__ == "__main__":
b2luigi.process(MyTask(my_parameter=["Some", "strange", "items", "with", "bad /

→˓signs"]))

create a file called my_parameter=hashed_08928069d368e4a0f8ac02a0193e443b/test.txt in your
output folder instead of using the list value.

4.7.4 What does the ValueError “The task id {task.task_id} to be executed. . . ”
mean?

The ValueError exception The task id <task_id> to be executed by this batch worker does not exist in the locally
reproduced task graph. is thrown by b2luigi batch workers if the task that should have been executed by this batch
worker does not exist in the task graph reproduced by the batch worker. This means that the task graph produced
by the initial b2luigi.process call and the one reproduced in the batch job differ from each other. This can be
caused by a non-deterministic behavior of your dependency graph generation, such as a random task parameter.

40 Chapter 4. Content

b2luigi Documentation, Release 0.9.0

4.8 Development and TODOs

You want to help developing b2luigi? Great! Have your github account ready and let’s go!

4.8.1 Local Development

You want to help developing b2luigi? Great! Here are some first steps to help you dive in:

1. Make sure you uninstall b2luigi if you have installed if from pypi

python -m pip uninstall b2luigi

2. Clone the repository from github

git clone https://github.com/nils-braun/b2luigi

3. b2luigi is not using setuptools but the newer (and better) flit as a a builder. Install it via

python -m pip [--user] install flit

You can now install b2luigi from the cloned git repository in development mode:

flit install -s

Now you can start hacking and your changes will be immediately available to you.

4. Install pre-commit, which automatically checks your code

python -m pip [--user] install pre-commit
pre-commit install # install the pre-commit hooks
pre-commit # run pre-commit manually, checks all staged ("added") changes

In particular, the python files are checked with flake8 for syntax and PEP 8 style errors. I recommend using an
IDE or editor which automatically highlights errors with flake8 or a similar python linter (e.g. pylint).

5. We use the unittest package for testing some parts of the code. All tests reside in the tests/ sub-directory. To
run all tests, run the command

python -m unittest

in the root of b2luigi repository. If you add some functionality, try to add some tests for it.

6. The documentation is hosted on readthedocs and build automatically on every commit to main. You can (and
should) also build the documentation locally by installing sphinx

python -m pip [--user] install sphinx sphinx-autobuild

And starting the automatic build process in the projects root folder

sphinx-autobuild docs build

The autobuild will rebuild the project whenever you change something. It displays a URL where to find the
created docs now (most likely http://127.0.0.1:8000). Please make sure the documentation looks fine before
creating a pull request.

7. Add a summary of your changes to the [Unreleased] section of the CHANGELOG.md.

8. If you are a core developer and want to release a new version:

4.8. Development and TODOs 41

https://pypi.org/project/flit/
https://pre-commit.com
https://flake8.pycqa.org
https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3/library/unittest.html
https://readthedocs.org
http://127.0.0.1:8000

b2luigi Documentation, Release 0.9.0

a. Make sure all changes are committed and merged on main

b. Use the bump2version package to update the version in the python file b2luigi/__init__.py as well
as the git tag. flit will automatically use this.

bumpversion patch/minor/major

c. Push the new commit and the tags

git push
git push --tags

d. Update the CHANGELOG.md following the Keep a Changelog format.

e. Create a new release on github, with the description copied from the CHANGELOG.md.

f. Check that the new release had been published to PyPi, which should happen automatically via github
actions. Alternatively, you can also manually publish a release via

flit publish

4.8.2 Open TODOs

For a list of potential features, improvements and bugfixes see the github issues. Help is welcome, so feel free to pick
one, e.g. with the good first issue or help wanted tags.

42 Chapter 4. Content

https://github.com/c4urself/bump2version
https://keepachangelog.com/en/1.0.0/
https://github.com/nils-braun/b2luigi/releases
https://github.com/nils-braun/b2luigi/actions
https://github.com/nils-braun/b2luigi/issues

CHAPTER 5

The name

b2luigi stands for multiple things at the same time:

• It brings batch to (2) luigi.

• It helps you with the bread and butter work in luigi (e.g. proper data management)

• It was developed for the Belle II experiment.

43

https://www.belle2.org

b2luigi Documentation, Release 0.9.0

44 Chapter 5. The name

CHAPTER 6

The team

Main developer Michael Eliachevitch (meliache)

Original author Nils Braun (nils-braun)

Features, fixing, help and testing

• Felix Metzner (FelixMetzner)

• Patrick Ecker (eckerpatrick)

• Jochen Gemmler

• Maximilian Welsch (welschma)

• Kilian Lieret (klieret)

• Sviatoslav Bilokin (bilokin)

• Phil Grace (philiptgrace)

• Anselm Baur (anselmbaur)

• Moritz Bauer (sognetic)

• Matthias Schnepf (mschnepf)

• Artur Gottmann (ArturAkh)

• Caspar Schmitt (schmitca)

• Marcel Hohmann (MarcelHoh_)

Stolen ideas

• Implementation of SGE batch system (sge).

• Implementation of LSF batch system (lsf).

45

https://github.com/meliache
https://github.com/nils-braun
https://github.com/FelixMetzner
https://github.com/eckerpatrick
https://github.com/welschma
https://github.com/klieret
https://github.com/bilokin
https://github.com/philiptgrace
https://github.com/anselm-baur
https://github.com/sognetic
https://github.com/mschnepf
https://github.com/ArturAkh
https://github.com/schmitca
https://github.com/spotify/luigi/blob/master/luigi/contrib/sge.py
https://github.com/spotify/luigi/pull/2373/files

b2luigi Documentation, Release 0.9.0

46 Chapter 6. The team

Python Module Index

b
b2luigi.basf2_helper.data, 34
b2luigi.basf2_helper.targets, 36
b2luigi.basf2_helper.tasks, 37
b2luigi.basf2_helper.utils, 38

47

b2luigi Documentation, Release 0.9.0

48 Python Module Index

Index

A
add_to_output() (b2luigi.Task method), 29

B
b2luigi.basf2_helper.data (module), 34
b2luigi.basf2_helper.targets (module), 36
b2luigi.basf2_helper.tasks (module), 37
b2luigi.basf2_helper.utils (module), 38
Basf2FileMergeTask (class in

b2luigi.basf2_helper.tasks), 37
Basf2nTupleMergeTask (class in

b2luigi.basf2_helper.tasks), 37
Basf2PathTask (class in b2luigi.basf2_helper.tasks),

37
Basf2Task (class in b2luigi.basf2_helper.tasks), 37
BatchProcess (class in b2luigi.batch.processes), 22

C
cdst (b2luigi.basf2_helper.data.DataMode attribute),

35
CdstDataTask (class in b2luigi.basf2_helper.data), 34
clear_setting() (in module b2luigi), 33
clone_on_cdst() (in module

b2luigi.basf2_helper.data), 36
clone_on_mdst() (in module

b2luigi.basf2_helper.data), 36
clone_on_raw() (in module

b2luigi.basf2_helper.data), 36
clone_on_skimmed_raw() (in module

b2luigi.basf2_helper.data), 36
cmd (b2luigi.basf2_helper.tasks.Basf2FileMergeTask at-

tribute), 37
cmd (b2luigi.basf2_helper.tasks.Basf2nTupleMergeTask

attribute), 37
cmd (b2luigi.basf2_helper.tasks.HaddTask attribute), 37
cmd (b2luigi.basf2_helper.tasks.MergerTask attribute),

37
create_path() (b2luigi.basf2_helper.tasks.Basf2PathTask

method), 37

create_path() (b2luigi.basf2_helper.tasks.SimplifiedOutputBasf2Task
method), 37

D
data_mode (b2luigi.basf2_helper.data.CdstDataTask

attribute), 34
data_mode (b2luigi.basf2_helper.data.DataTask

attribute), 35
data_mode (b2luigi.basf2_helper.data.MdstDataTask

attribute), 35
data_mode (b2luigi.basf2_helper.data.RawDataTask

attribute), 36
data_mode (b2luigi.basf2_helper.data.SkimmedRawDataTask

attribute), 36
database (b2luigi.basf2_helper.data.DstDataTask at-

tribute), 35
DataMode (class in b2luigi.basf2_helper.data), 35
DataTask (class in b2luigi.basf2_helper.data), 35
dispatch() (in module b2luigi), 31
DispatchableTask (class in b2luigi), 32
DstDataTask (class in b2luigi.basf2_helper.data), 35

E
exists() (b2luigi.basf2_helper.targets.ROOTLocalTarget

method), 36
experiment_number

(b2luigi.basf2_helper.data.DataTask attribute),
35

ExternalTask (class in b2luigi), 31

F
file_name (b2luigi.basf2_helper.data.DataTask

attribute), 35

G
Gbasf2Process (class in

b2luigi.batch.processes.gbasf2), 18
get_all_input_file_names() (b2luigi.Task

method), 30

49

b2luigi Documentation, Release 0.9.0

get_all_output_file_names() (b2luigi.Task
method), 30

get_basf2_git_hash() (in module
b2luigi.basf2_helper.utils), 38

get_input_file_names() (b2luigi.Task method),
30

get_input_file_names_from_dict()
(b2luigi.Task method), 30

get_job_status() (b2luigi.batch.processes.BatchProcess
method), 23

get_output_file_name() (b2luigi.Task method),
31

get_output_file_target()
(b2luigi.basf2_helper.tasks.Basf2Task method),
37

get_serialized_parameters()
(b2luigi.basf2_helper.tasks.Basf2Task method),
37

get_setting() (in module b2luigi), 32
git_hash (b2luigi.basf2_helper.tasks.Basf2Task

attribute), 37

H
HaddTask (class in b2luigi.basf2_helper.tasks), 37
HTCondorProcess (class in

b2luigi.batch.processes.htcondor), 16

K
kill_job() (b2luigi.batch.processes.BatchProcess

method), 23

L
LSFProcess (class in b2luigi.batch.processes.lsf), 15

M
max_event (b2luigi.basf2_helper.tasks.Basf2PathTask

attribute), 37
mdst (b2luigi.basf2_helper.data.DataMode attribute),

35
MdstDataTask (class in b2luigi.basf2_helper.data), 35
MergerTask (class in b2luigi.basf2_helper.tasks), 37

N
num_processes (b2luigi.basf2_helper.tasks.Basf2PathTask

attribute), 37

O
on_temporary_files() (in module b2luigi), 33
output() (b2luigi.basf2_helper.data.CdstDataTask

method), 34
output() (b2luigi.basf2_helper.data.DstDataTask

method), 35

output() (b2luigi.basf2_helper.data.MdstDataTask
method), 35

output() (b2luigi.basf2_helper.data.RawDataTask
method), 36

output() (b2luigi.basf2_helper.data.SkimmedRawDataTask
method), 36

output() (b2luigi.basf2_helper.tasks.MergerTask
method), 37

output() (b2luigi.basf2_helper.tasks.SimplifiedOutputBasf2Task
method), 37

P
prefix (b2luigi.basf2_helper.data.DataTask attribute),

35
process() (b2luigi.basf2_helper.tasks.Basf2PathTask

method), 37
process() (b2luigi.basf2_helper.tasks.MergerTask

method), 37
process() (b2luigi.DispatchableTask method), 32
prod (b2luigi.basf2_helper.data.DstDataTask attribute),

35
product_dict() (in module b2luigi.core.utils), 34

R
raw (b2luigi.basf2_helper.data.DataMode attribute), 35
RawDataTask (class in b2luigi.basf2_helper.data), 36
release (b2luigi.basf2_helper.data.DstDataTask at-

tribute), 35
ROOTLocalTarget (class in

b2luigi.basf2_helper.targets), 36
run_number (b2luigi.basf2_helper.data.DataTask at-

tribute), 35

S
set_setting() (in module b2luigi), 33
SimplifiedOutputBasf2Task (class in

b2luigi.basf2_helper.tasks), 37
skimmed_raw (b2luigi.basf2_helper.data.DataMode

attribute), 35
SkimmedRawDataTask (class in

b2luigi.basf2_helper.data), 36
start_job() (b2luigi.batch.processes.BatchProcess

method), 23

T
Task (class in b2luigi), 29

W
WrapperTask (class in b2luigi), 31

50 Index

	Why not use the already created batch tasks?
	Is this the only thing I can do with b2luigi?
	Why are you still talking, lets use it!
	Content
	Installation
	Quick Start
	Batch Processing
	Belle II specific examples
	API Documentation
	Run Modes
	FAQ
	Development and TODOs

	The name
	The team
	Python Module Index
	Index

